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Abstract

““*Machine learning has always been an integral part of artificial inteiligence. and its methodology has
evolved in concert with the major concerns of the field. In response to the difficuities of encoding
ever-increasing volumes of knowledge in modern Al systems. many researchers have recently turned
their attention to machine learning as a means to overcome the knowledge acquisition bottleneck.
Part | of this paper presents a taxonomic analysis of machine learning organized primarily by learning
strategies and secondarily by knowledge representation and application areas. A historical survey
outlining the development of various approaches to machine.learning is presented from early neural
networks to present knowledge-intensive techniques. Part ll (to be published in a subsequent issue)
will outline major present research directions, and suggest viable areas for future inw.es,:igatifF

fe

1This» paper is Q modified and extended version of the first chapter of Machine Learning: An Artiticial intelligence Approach
{Michaiski et ar.. 1983, with permission of the publisher: Tioga Press (Palo Alto, CA). The research descnibed here was
soonsored in part by the Qffice of Naval Research (ONR) under grant number NG00 14-79-C-0661, and in part by the National
Science Foundation grant MCS82-05168.
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A Histarical and Methodological Analysis 1

1. Introduction

Learning is a many-faceted phenomenon. Learning processes include the acquisition of new
deciarative knowledge, the development of motor and cognitive skills through instruction or practice,
the organization of new knowledge into general. ~ffective representations, and the discovery of new
facts and theories through observation and experimentation. The study and computer modelling of
learning processes in their mult'iple manifestations constitutes the subject matter of machine learning.

Although machine learning has been a central concern in artificial intelligence since the early days
when the idea of “self-organizing systems"” was popular, the limitations inherent in the early neural
network approaches led to a temporary decline in research volume. More recently, new symbolic
methods and knowledge-intensive techniques have yielded promising results and these in turn have
led to the current revival in machine learning research. This paper examines some basic
methodological issues, proposes a classification of machine learning techniques, and provides a
historical review of the major research directions.

2.The Objectives of Machine Learning
The field of machine learning can be organized around three primary research foci:

e Task-Oriented Studies—the development and analysis of learning systems oriented
toward solving a predetermined set of tasks {also known as the “engineering approach')

e Cognitive Simulation—the investigation and computer simulation of human Iearnmg
processes {(also known as the "cognmve modelling approach™)

e Theoretical Analysis—the theoretical exploration of the space of possible learning
methods and algorithms independent of appfication domain.

Although many research efforts strive primarily towards one of these objectives, progress in one
objective often leads to progress in another. For instance, in order to investigate the space of
possible learning methods, a reasonable starting point may be to consider the only known example of
robust learning behavior, namely humans (and perhaps other biological systems). Similarly,
psychological investigations of human learning may be helped by theorelical analysis that may
suggest various plausible learning models. The need to acquire a particufar form of knowledge in
some task-oriented study may itseif spawn new theoretical analysis or pose the question: ‘'How do
humans acquire this specific skill (or knowledge)?' The existence of these mutually supportive
objectives reflects the entire field of artificial intelligence, where expert systems research, cognitive
simulation, and theoretical studies provide some cross-fertilization of problems and ideas.




2 The Cbjectives of Machine Learning

2.1. Applied Learning Systems: A Practical Necessity

At present. instructing a computer or a computer-controlied robot to perform a task requires one o
define a complete and correct algorithm for that task, and then laboriously program the algorithm into
a computer. These activities typically involve a tecious and time.consuming effort by specially trained

personnel.

Present-day computer systems cannot truly learn to perform a task through examples or by analogy
to a similar, previously-sclved task. Nor can they improve significantly on the basis of past mistakes,
or acguire new abilities by observing and imitating experts. Machine learning research strives to
cpen the possibility of instructing computers in such new ways. and thereby promises to ease the
burden of hand-programming growing volumes of increasingly compiex information into the
computers of tomorrow. The rapid expansion of applications and availability of computers today

makes this possibility even more attractive and desirable.

When approaching a task-oriented knowledge acquisition task, one must be aware that the
resultant computer systems must interact with humans. and therefore should closely parailel human
abilities. The traditional argument that an engineering approach need not reflect human or biological
pertormance is not truly applicable to machine learning. Since airplanes, a successful result of an
almost pure engineering approach, bear little resemblance to their biological counterparts, one may
argue that applied knowledge acquisition systems could be equally divorced from any consideration
of human capabilities. This argument does not apply here because airpianes need not interact with or
understand birds. Learning machines, on the other hand, will have to interact with the peopie who
make use of them, and conseqguently the concepts and skills they acquire—if not necessanly their
internal mechanisms—~—must be understandable to humans.

2.2. Machine Learning as a Science

The gquestion of what are the genetically-endowed abilities in a bioiogical system (versus
environmenlally-acquired skills or knowledge) has fascinated biologists. psychologists, philosophers
and artificial intefligence researchers alike. A clear candidate for a cognitive invariant in humans is
the learning mechanism—the innate ability to acquire facts, skills and more abstract concepts.
Therefore. understanding human learning well enough to reproduce aspects of that learning behavior
in a computer system is, in itself, a worthy scientific goal. Moreover. the computer can render
substantial assistance to cognitive psychology, in that it may be used {0 test the consistency andg
completeness of learning theories, and enforce a commitment to fine-structure process-level detail

that precludes meaningless. tautofogical or untestable theories [Sloaman, 1978: Carhanell, 1881).
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The study of human learning processes is also of considerable practical significance. Gaining
insights into the principles underlying human learning abilities is likely to lead to more effective
educational techniques. Thus, it is not surprising that research into intelligent computer-assisted
instruction, which attempts to develop computer-based tutoring systems, shares many of the goals
and perspectives with machine learning research. One particularly interesting development is that
computer tutoring systems are starting to incorporate abilities to infer models of student competence
from observed performance. Inferring the scope of a student’s knowledge and skills in a particular
area allows much more effective and individualized tutoring of the student [Sleeman, 1983].

An equally basic scientific objective of machine learning is the exploration of possible learning
mechanisms, including the discovery of ditferent induction algorithms, the scope and theoretical
limitations of certain methods, the information that must be available to the learner, the issue of
coping with imperfect training data, and the creation of general techniques appiicable in many task
domains. There is no reason to believe that human learning methods are the only possible means of
acquiring knowledge and skills. In fact, common sense suggests that human learning represents just
one point in an uncharted space of possible learning methods—a point that through the evolutionary
process is particularly well suited to cope with the general physical environment in which we exist.
Most theoretical work in machine learning has centered on the creation, characterization and analysis
of general learning methods, with the major emphasis on analyzing generality and performance rather
than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of possible learning methods,
the task-oriented approach provides a vehicle to test and improve the performance of functional
learning systems. 8y constructing and testing applied learning systems, one can determine the
cost-effectiveness trade-offs and limitations of particular approaches to learning. In this way,
individual data points in the space of possible learning systems are explored, and the space itseif
becomes better understood.

2.3. Knowledge Acquisition versus Skill Refinement

There are two basic forms of learning: knowledge acquisition and skill refinement. When we say
that someone learned physics, we mean that this person acquired concepts of physics, understood
their meaning, and their relationship to each other as weil as to the physical world. The essence of
learning in this case is the acquisition of knowledge, including descriptions and models of physical
systems and their behaviors, incorporating a variety of representations—from simple intuitive mental
models, examples and images, to compietely tested mathematical equations and physical faws. A
person is said to have learned more it his knowledge explains a broader scope of situations, is more
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accurate. and is tetter able to predict the behavior of the physicat werid [Popper, 1968]. This form of
learning is typical to a large variety of situations and is generally termed «nowiedge acquisition.
Hence. knowledge acquisition is defined as learning new symbolic information coupled with the

ability to apply that information in an effective manner.

A second kind of learning is the gradual improvement of motor and cognitive skills through practice,
such as learning to ride a bicycle or to play the piano. Acquiring textbook knowledge on how to
perform these activities represents only the initial. and not necessarily critical, phase in developing
the requisite skills. The bulk of the learning process consists of refining the acquired skill, and
improving the mental or mctor coordinaticn by repeated practice and a correction ¢f deviations from
desired behavior. This form of learning, often called skill refinement. differs in many ways from
xnowledge acquisition. Whereas the essence of knowledge acquisition may be a conscious process
whose result is the creation of new symbolic knowledge structures and mental models, skill
refinement occurs by virtue of repeated practice without concerted conscious effort. Maost human
learning appears to be a mixture of both activities, with intellectual endeavors favoring the former,

and motor coordination tasks favoring the latter.

Present machine learning research focuses on the knowledge acquisition aspect, although some
investigations, specifically those concerned with learning in problem-solving and transforming
declarative instructions into eftective actions. touch on aspects of both types of learning. Whereas
knowledge acquisition clearly belongs in the realm of artificial intelligence research. a case could be
made that skill refinement comes closer to non-symbolic processes. such as those studied in adaptive
control systems. it may indeed be the case that skill acquisition is inherently non-symbolic in
biological systems. but an interesting symbolic model capabie of simulating gradual skiil improvement
through practice has been proposed by Newell and Rosenbloom [Newell. 1981]. Hence. perhaps both

forms of learring can be captured in artificial intelligence models.

3. A Taxonomy of Machine Learning Research

This section presents a taxonomic road map to the field of machine learming with a view towards
presenting useful criteria for classifying and comparing most artificial inteiligence-based machine
learning investigations. Later, the main directions actually taken by researchers in this area over the
past twenty years are surveyed.

One may classify machine learning systems along many different dimensions. We have chosen

three dimensions as particutarly meaningful:
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o Classification on the basis of the underlying learning strategy used. The strategies are
ordered by the amount of inference the learning system performs on the information
provided to the system.

o Classification on the basis of the type of representation of knowledge {or skill) acquired
by the learner.

o Classification in terms of the application domain of the performance system for which
knowledge is acquired.

Each point in the space defined by the above dime‘nsions corcesponds to a system employing a
particuiar learning strategy, a particular knowledge representation, and applied to a particular
domain. Since many existing learning systems employ multiple strategies and knowledge
representations, and some have been applied to more than one domain, such learning systems are

characterized by a collection of points in the space.

The subsections below describe explored values along each of these dimensions. Future research
may well reveal new values on these dimensions as well as new dimensions. Indeed, the larger space
of all possible learning systems is still only sparsely explored and partially understood. Existing
learning systems correspond to only a small portion of the spaée because they represent only a small
number of possible combinations of the values. ‘

3.1. Classification Based on the U'nderlying Learning Strategy

Since we distinguish learning strategies by the amount of inference the learner performs on the
information provided, we first consider the two extremes: performing no inference, and performing a
substantial amount of inference. If a computer system is programmed directly, its knowledge
increases. but it performs no inference whatsoever on the new information: all cognitive effort is on
the part of the programmer. Conversely, it a system independently discovers new theories or invents
new concepts, it must perform a very substantial amount of inference; it is deriving organized
knowledge from experiments and observations. An intermediate point in the spectrum would be a
student determining how to solve a mathematics problem by analogy to worked-out examples in the
textbook—a process that requires inference, but much less than discovering a new branch of
mathematics without guidance from teacher or textbook.

As the amount of inference that the learner is capabie of performing increases, the burden placed
on the teacher or external environment decreases. It is much maore difficult to teach a person by
explaining each step in a complex task than by showing that person the way that similar tasks are
usually handled. It is more difficult yet to program a computer to perform a compiex task than to
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nstruct a person to perform the tas«: as programming requires 2xplic:t specification of all requisite
detail. whereas a person receiving instruction can use prior knowledge and common sense to fill in
most mundane details. The taxonomy below captures this notion of trade-offs in the amount of effort
required of the learner and of the teacher.

3.1.1. Rote Learning and Direct Implanting of New Knowledge
In rote learning no inference or other transformation of the knowledge is performed by the learner.
Vanants of this strategy of knowledge acquisition method include:

e Learning by being programmed. constructed or medified by an external entity, (for
example. the usual style of computer programming).

e Learning by memorization of given facts and data with no inferences drawn from the
incoming information (for example. as performed by existing database systems). The
term “rote learning’’ is used primarily in this context.

3.1.2. Learning.from Instruction

Acquiring knowledge from a teacher or other organized source. such as a textbook. requires that
the learner transform the knowledge from the input language to an internally-usable representation,
and that the new information be integrated with prior knowledge for effective use. Hence. the learner
is required to perform some inference, but a large fraction of the burden remains with the teacher,
who must present and organize knowledge in a way that incrementaily augments the student's
existing knowledge. Learning from instruction, aiso termed “learning by being told”. parallels mest
lormal education methods. Therefore. the machine learning task is one of building a system that can
accept instruction or advice and can store and apply this learned knowledge effectively.

3.1.3. Learning by Analogy

Learning by analcgy is the process of transforming and augmenting existing knowledge {or skills)
applicable in one domain to perform a simiiar task in a related domain. For instance. a person who
has never driven a small truck. but drives automaobiles. may well transform his existing skill (perhaps
imperfectly) to the new task. Similarly, a learning-by-analogy system might be appiied to convert an
existing computer program into one that performs a closely-related function for which it was not
originally designed. Learning by analogy requires more inference on the part of the iearner than does
rote learning or learning from instruction. A fact or skill analogous in relevant parameters must be
retrieved from memory; then the retrieved knowiedge must be appropriately transformed, appfied to
the new situation. and stored for future use.

e
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3.1.4. Learning from examples
Learning from examples is a special case of inductive learning. Given a set of examples and
counterexampies of a concept, the learner induces a generai concept description that describes all of
the positive examples and none of the counterexamples. Learning from examples is 2 method that
'} has been heavily investigated in artificial intelligence. The amount of inference performed by the
! learner is much greater than in learning from instruction, as no general concepts are provided by a
' teacher, and is somewhat greater than in learning by analogy, as no similar concepts are provided as
“seeds” from which the new concept may be grown. Learning from examples can be subcategorized
according to the source of the examples:

e The source is a teacher who knows the concept and generates examples of the concept
that are meant to be as helpful as possibie. If the teacher aiso knows (or, more typically,
infers) the knowledge state of the learner, the examples can be generated to optimize
convergence on the desired concept (as in Winston's near-miss analysis [Winston,
1975)).

o4 A aar o S A e A o 48
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The source is the learner itself. The learner typically knows its own knowledge state. but
clearly does not know the concept to be acquired. Therefore, the learner can generate
instances (and have an external entity such as the environment or a teacher ¢lassify them
as positive or negative examples) on the basis of the information it believes necessary to
discriminate among contending concept descriptions. For instance, a learner trying to
acquire the concept of “'ferromagnetic substance'', may generate as a possibie candidate
“all metals”. Upon testing copper and other metals with a magnet, the learner will then
discover that copper is a counterexample, and therefore the concept of ferromagnetic
substance should not be generalized to include all metals. (Mitchell's LEX system (1983]
and Carbonell's plan generalization method [1983] illustrate the process of internal
instance generation.)

ot e el 3 M e o ¢ L P

o The source is the external environment. In this case the example generation process is
operationally random, as the learner must rely on relatively uncontrolled observations.
For example, an astronomer attempting to infer precursors to supernovas must rely
mainly upon unstructured data presentation. Although the astronomer knows the

‘ concept of a supernova, he cannot know a priori where and when a supernova will occur,

i nor can he cause one to exist. (Michaiski's STAR methodology [1983)] exempilifies this

type of learning).

i One can also classify learning from examples by the type of examples available to the learner:

e Only positive examples available. Whereas positive examples provide instances of the
concept to be acquired, they do not provide information for preventing overgeneralization
of the inferred concept. In this kind of learning situation, overgeneralization might be
avoided by considering only the minimal generalizations necessary, or by relying upon a

! priori domain knowledge to constrain the concept to be inferred.

) e Positive and negative examples avaifable. In this kind of situation, positive examples force
generalization whereas negative exampies prevent overgeneralization (the induced
concept should never be so general as to include any of the negative examples). This is
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8 A Taxonomy of Machine Learming Research

the mest typical form of learning from examples.

Learning trom examples may be one-trial or incremental. In the former case. all examgles are
presented at once. In the latter case. the system mwst form cne or m -e hypotheses of the concent (or
range of concepts) consistent with the available data, and subsequently refine the hypotheses after
considering additionai examples. The incremental approach more closely parallels human learning,
allows the learner to use partially learned concepts (for performance. or to guide the example
generation process). and enables a teacher to focus on the basic aspects of a new concept before
attempting to impart less central details. On the other hand, the one-step agproach (s less apt to lead
one down garden paths by an injudicicus choice of initial exampies in formulating the kernel of the

new Concept:

3.1.5. Learning from Observation and Discovery

This “unsupervised learning” approach is a very general form of inductive learning that includes
discovery systems. theory-formation tasks, the creation of classification criteria to form taxonomic
hierarchies. and similar tasks to be performed without benetit of an external teacher. Unsupervised
iearning requires the fearner to perform more inlerence than any approach thus far discussed. The
learner is not provided with a set of instances of a particular concept, nor is it given access to an
oracle that can classity internally-generated instances as positive or negative examples of any given
concept. Moreover, rather than focu§ing on a single concept at a time, the observations may span
several concepts that need to be acquired. thus introducing a severe focus-of-attention probiem.
One may subclassify learning from observation according to the degree of interaction with an external
environment. The extreme points in this dimension are:

e Passive observation. where the learner classifies and taxonomizes observations of
multiple aspects of the environment (as in Michaliski and Stepp's conceptual clustering
[1983] )

e Active experimentation, where the learner perturbs the environment to observe the
resuits of its perturbations. Experimentation may be random. dynamically focused
according to general criteria of interestingness. or strongly guided by theoretical
constraints. As a system acquires knowledge. and hypothesizes theories it may be driven
to confirm or disconfirm its theories, and hence explore its environment appiying different
observation and experimentation strategies as the need arises. Often this form of
learning involves the generation of examples to test hypothesized or partially acquired
concepts. (This type of learning is exempiified in Lenat's AM and EURISKO systems
[Lenat, 1976, Lenat, 1983].)

An intermediate point in this dimension is the BACON system [Langley, e! a/, 1983}, which selectively

focuses attention but does not design new experiments.
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The above classification of learning strategies should help one to compare various learning systems
in terms of their underlying mechanisins, in terms of the available external source of information. and

in terms of the degree to which they rely on pre-organized knowledge.

3.2. Classification According to the Type of Knowledge Acquired

A learning system may acquire rules of behavior, descriptions of physical objects, problem-solving
heuristics, classification taxonomies over a sample space, and many other types of knowledge useful
n the performance of a-wide variety of tasks. The list below spans types of knowledge acquired,
primarily as a function of the representation of that knowledge.

1. Parameters in algebraic expressions—Learning in this context consists of adjusting
numerical parameters or coefficients in algebraic expressions of a fixed functional form
S0 as to obtain desired performance. For instance, perceptrons [Rosenbiatt, 1958:
Minsky & Papert, 1963] adjust weighting coelfficients for threshold logic elements when
learning to recognize two-dimensional patterns.

2. Decision trees—Some systems acquire decision trees to discriminate among classes of
objects. The nodes in a decision tree correspond to selected cbject attributes. and the
edges correspond to predetermined alternative values for these attributes. Leaves of the
tree correspond to sets of objects with an identical classification. Feigenbaum's EPAM
exempiifies this discrimination-based learning approach [Feigenbaum, 1963}

3. Formal grammars—In learning to recognize a particular (usuaily artificial) tanguage,
formal grammars are induced from sequences of expressions in the language. These
grammars are typically represented as regular expressions, finite-state automata,
context-free grammar rules, or transformation rules.

4. Production rules—A production rule is a condition-action pair {C => A}, whereCisa
set of conditions and A is a sequence of actions. If all the conditions in a production rule
are satistied. then the sequence of actions is executed. Due to their simplicity and ease
of interpretation, production rules are a widely-used knowledge representation in
learning systems. The four basic operations whereby production rules may be acquired
and refined are:

e Creation: A new rule is constructed by the system or acquired from an external
entity.

e Generalization: Conditions are dropped or made less restrictive, so that the rule
applies in a larger number of situations,

o Specialization: Additional conditions are added to the condition set, or existing
conditions made more restrictive, s0 that the rule applies to a smaller number of
specific situations.

e Compasition: Two or more rules that were applied in sequence are composed into
a single larger rule, thus forming a “compiled"” process and eliminating any
redundant conditions or actions.
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2 Forma! logic-based expressions and related formalisms-—These general-purpose
representations have peen used to formulate descriptions of individual objects (that are
nput to a 'earning system) and !o formuiate resultant concept descriptions (that are
cutput from a learning system). They take the form of formal lcgic exgressions whose
components are propositions, arbitrary predicates. finite-valued variables. statements
restncting ranges of vanacies (such as "a number between 1 and 97). or embedded
logical expressions.

€. Graphs and Nelworks—in many domains graphs and networks provide a more
convenient and efficient representation than logical expressions, although the expressive
power of network representaticns is comparable to that of formal logic exgressions.
Some learmng tachmiques exploit grapn-matching ancd gragh-transtormation schemes 0
compare and incex knowlecge efficiently.

Frames and schemas—These provide larger organizational units than single logical
axpressions or production ruies. Frames and schemas can be viewed as collections of
lapeted entities ("'slots™’), each siot playing a certain prescribed role in the representation.
They have proven quite useful in many artificial intelligence applications. For instance, a
system that acquires generalized plans must be able to represent and manipulate such
pians as units. although therr internal structure may be arbrtrarily complex. Moreover, in
avperiential learning, past successes. untested alternatives. causes of failure. and other
information must be recorded and compared n induc;ﬁg and refining various rules of
behavior (or entire plans). Schema representations provide an appropriate formalism.

o

learning systems 1s 10 acquire an ability to carry out a specific process efficiently, rather
than to reason about the internal structure of the process. Most automatic programming
systems fall in this general category. In addition to computer programs, procedural
encodings nclude human maotor skills (such as knowing how to ride a bicycie),
instruction sequences to robot manipulators. and other “compiled’” human or machine
skifls. Unlike logicai descriptions. networks or frames. the detailled internal structure of
the resultant procedural encodings need not be comprehensible to humans. or to
automated reasoning systems. Oniy the external behavior of acquired procedural skifis
become directly available to the reasoning system.

. Computer programs and other procedural encodings--The objective of sgreral l

9. Taxonomies—L_Learning from cbservation may result in giobal structuring of demain
cbjects into a hierarchy or taxonomy. Clustering object descriptions into newly-proposed
categories and torming hierarchical classifications require that the system formulate
retevant criteria for classification.

10. Muitiple representations—Some knowledge acquisition systems use several
representation schemes for the newly-acquired knowledge. Most notably, some
discovery and theory-formation systems acguire concepts. operations on those concepts,
and heuristic rules for new domains. These learning systems must select appropriate
combinations of representation schemes applicable to the different forms of knowledge
acquired.
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3.3. Classification by Domain of Application

Another useful dimension for classifying learning systems is their area of application. The list below
specifies application areas to which various existing learning systems have been applied. Application
areas are presented in alphabetical order, not reflecting the relative effort or significance of the

resultant machine learning system.

1. Agriculture
2. Chemistry
3. Cognitive Modeling (simulating human learning processes) '
4, Computer Programming
5. Education
6. Expert Systems (high-perform_ance. domain-specific Al programs)
7. Game Playing (chess, checkers, poker, and so on)
8. General Methods (no specific domain)
9. Image Recognition ‘
10. Mathematics
11. Medical Diagnosis
12. Music
13. Natural Language Processing
14. Physical Object Characterizations
15. Physics
16. Planning and Problem-solving
17. Robotics
18. Sequence Extrapolation
19. Speech Recognition

Mow that we have a basis for classifying and comparing learning Systems, we turn to a brief
historical outline of machine iearning.
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4. A Historical Sketch of Machine Learning

Over the years. research in machine learning has been pursued with varying degrees of intensity,
using different approaches and placing emphasis on different aspects and goals. Within the relatively
short histcry of this discipline, one may distinguish three maiof periods, each centered around a
citterent paradigm:

¢ neural modeling and decision-theoretic techniques
¢ symbolic concept-oriented learning

e xnowledge-intensive approaches combining various learning strategies

4.1. The Neural Modelling Paradigm

The distinguishing feature of the first paradigm was the interest in building general purpose learning
systems that start with little or no initial structure or task-oriented knowledge. The major thrust of
research based on this tabula rasa approach involved constructing a variety of neural model-based
machines. with random or partially random initial structure. These systems were generally referred to
as neural nets or self-organizing systems. Learning in such systems consisted of incremental
changes in the probabilities that neuron-like elements (lypically threshold logic units) would transmit

a signal.

Due to the primitive nature of computer technology at that time, most of the research under this
paradigm was either theoretical or involved the construction of special purpose experimental
hardwar systems, such as perceptrons [Rosenblatt. 1958], pandemonium [Selfridge. 1959] and
adelaine [Widrow. 1862]. The groﬁndwork for this paradigm was laid in the forties by Rashevsky and
his followers working in the area of mathematical biophysics [Rashevsky, 1948], and by McCulloch
and Pitts [1943]. who discovered the applicability of symbolic logic to modeling nervous system
activitres. Among the large number of research efforts in this area. one may mention many works
such as [Ashby. 1960; Rosenblatt, 1958, 1962: Minsky & Papert. 1969; Block. 1961; Yovits, 1962;
Widrow. 1962: Cuiberson, 1963; Kazmierczak, 1963). Related research involved the simulation of
evolutionary processes. that through random mutation and “natural'” setection might create a system
capabie of some intelligent behavior (for example, [Friedberg, 1958, 1959; Holland, 19€0]).

Experience in the above areas spawned the new discipline of pattern recognition and led to the
development of a decision-thecretic approach to machine learning. In this approach. learning 1s
eguated with the acquisition of linear, polynomial. or related discriminant functions from a given set of
training examples (for example, [Nilsson. 1965; Kotord. 1966; Uhr, 19€6; Highteyman. 1967] ). QOne of
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the best known successful learning systems utilizing such techniques (as well as some original new
ideas involving non-linear transformations) was Samuel's checkers program [Samuel, 1959, 1963).
Through repeated training, this program acquired master-level performance. Somewhat different, but
closely related, techniques utilized methods of statistical decision theory for learning pattern
recognition rules (for example, [Sebestyen, 1962; Fu, 1968; Watanabe, 1960; Arkadev, 1971;
Fukananga. 1972; Duda & Hart, 1973; Kanal, 1974)).

In parallel to research on neural modeling and decision-theoretic techniques. researchers in control
theory developed adaptive control systems able to adjust automatically their parameters in order to
maintain stable performance in the presence of various disturbances (for example, [Truxal, 1955:
Davies, 1970; Mendel, 1970; Tsypkin, 1968, 1971, 1973; Fu, 1971, 1974)).

Practical resuits sought by the neural modeling and decision theoretic approaches met with limited
success. High expectations articulated in various early works were not realized, and research under
this paradigm began to decline.. Theoretical studies have revealed strong limitations of the
“knowledge-free" perceptron-type learning systems [Minsky & Papert, 1969).

4.2. The Symbolic Concept-Acquisition Paradigm

A second major paradigm started to emerge in the early sixties stemming from the work of
psychologists and early Al researchers on models of human learning [hunt ef al., 1963, 1866). The
paradigm utilized logic or graph structure representations rather than numerical or statistical
methods. Systems learned symbolic descriptions representing higher level knowledge and made
strong structural assumptions about the concepts to be acquired.

Examples of work in this paradigm include research on human concept acquisition (for example,
(Hunt 8 Hoviand, 1963; Feigenbaum, 1963; Hunt et al., 1966; Hilgard, 1966; Simon 8 Lea, 1974]), and
various applied pattern recognition systems ( [Bongard, 1970; Uhr, 1966; Karpinski & Michaiski,
1966]).

Some researchers constructed task-oriented specialized systems that would acguire knowledge in
the context of a practical problem. For instance, the META.DENDRAL program [Buchanan, 1978)
generates rules explaining mass spectrometry data for use in the DENDRAL system [Buchanan e! a/.,
1971].

An influential development in this paradigm was Winstan's structural learning system [Winston,
1975]. In parallel with Winston's work, different approaches to learning structural éoncepts from
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sxamples amergad. including a family of legic-tased inductive l2arning programs (aavaL) [Michalski,
1972, 1973, 1978). and related work by Hayes-Roth [1974], Hayes-Roth & McDermott [1978], Vere
{1975], and Mitchell [1978]. (See Dietterich and Michalski [1983] and Michie [1682] for acditional

adiscussion of this paradigm.)

4.3. The Modern Knowledge-intensive Paradigm

The third paradigm represents the most recent period of research starting in the mid-seventies.
Recearchers have broadened their interest beyond learning isolated concepts from exampies, and
have begun investigating a vade spectrum of learning methods. most based upon knowledge-rich

systems. Specifically. this paradigm can be characterized by several new trends. including:

1. Knowledge-intensive Approaches: Researchers are strongly emghasizing the use of
task-oriented knowiedge and the constraints it provides in guiding the learmng process.
One lesson from the failures of earlier tavula rasa and knowledge-poor learning systems
1s that to acquire new knowledge a system must already possess a great deal of initial
knowledge.

2. Exploration of alternative methods of learning: In addition to the earlier research
emphasis on learning frcm examples. researchers are now investigating a wider vanety of
learming methods such as learning from instruction (e.g.. [Mcstow. 1983: Haas & Hendrix,
1983; Rychener. 1983]), learming by analogy (e.g.. [Winston, 1979: Carboneil. 1983
Anderson. 1982)]) and discovery of concepts and classifications (e.g.. [Lenat. 1976;
Langley, et al/, 1983. Michaiski. 1983; Michalski & Stepp. 1983; Hayes-Roth. 1983.
Quinlan, 1983]).

3. Incorporating abilities to generate and seiect learning tasks: in contrast to
previous efforts, a number of current systems incorporate heuristics to contrel their focus
of attention by generating learning tasks, proposing experiments to gather training data,
and choosing concepts to acquire (e.g.. [Lenat. 1876: Mitcheil, 1983; Cartonell. 1983)).

In contrast with the knowledge-free parametric tearming methods used in the neural networks. and
i contrast with the early symbolic methods that learned isolated. “cdisembodied”™ concepts. the
current approaches use a wealth of general and domain-specific knowiedge. However. the availabulity
of large volumes of knowledge does not mean that the inductive inference processes are themseives
cdomain dependent and non-generalizable. The generality lies in the inductive inference methods and
the power is derived from their ability to use domain knowledge to focus attention and structure new
concepts. The current methodological assumption is that machine learning systems, much like
humans, must learn incrementally, slowly expanding a highily-organized knowiedge base, rather than
by some gestalt self-organization process. The recently published book on machine learning
[Michalski, Carbonell & Mitchell, 1983] presents some of the major research directions in this general
approach.
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In Part Il of this paper we will discuss current research approaches in greater depth, drawing from
current investigations, and we will suggest some future research directions that we believe hold

significant promise.

5. References

Anderson, J. A., “'Acquisition of Proof Skills in Geometry,”” Machine Learning, An Artilicial Intelligence
Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell (Eds.), Tioga Press, Palo Alto,
CA, 1983.

Arkadev, A. G. and Braverman, E. M., Learning in Paltern Classification Machines, Nauka, Moscow.,
1971.

Ashby, W. Ross, Design for a Brain, The Origin of Adaptive Behavior, John Witey and Sons, Inc., 1960.

Block, H. D., “The Perceptron: A Model of Brain Functioning, I."” Rev. Math. Phrysics, Val. 34, No. 1,
pp. 123-135, 1961.

Bongard, N., Pattern Recognition, Spartan Books, New York, 1970, (Translation from Russian
original, published in 1967).

Buchanan, B.G. and Mitchell, T.M., *“Model-Directed Learning of Production Rules,”
Pattern-Oirected Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic
Press, New York, 1978.

Buchanan, 8. G., Feigenbaum, E. A. and Lederberg, J., “A heuristic programming study of theory
formation in sciences,” Proceedings of the Second Intetnational Joint Conference on Artificial
Intelligence, International Joint Conferences on Artificial Intelligence, London, pp. 40-48,
1971.

Carboneil, J.G., "issyes in Computer Modeling of Cognitive Phenomena: An Al Perspective
(Commentary on K.M. Colby's 'Modeling a Paranoid Mind'',) The Behavioral and Brain
Sciences, Vol. 4, No. 4, December 1981,

Carbonell, J. G., “Learning by Analogy: Formulating and Generalizing Plans trom Past Experience,”
Machine Learning, An Artilicial Intelligence Approach, R. S. Michalski, J. G. Carbonell and
T. M. Mitchell (Eds.), Tioga Press, Palo Alto, CA, 1983.

Culberson, J. T., The Minds of Robots, University of lllinois Press, Urbana, llinois, 1963.

Davies. W. D. T., System Identitication for Self-Adaptive Control, Wiley-Interscience, Wiley and Sons,
Ltd., 1970.

Dietterich, T.G. and Michaiski, R.S., “"A Comparative Review of Selected Methods for Learning
Structural Descriptions,” Machine Learning, An Artificial Intelligence Approach, R.S.
Michaiski, J. G. Carbonelt-and T. M. Mitchell (Eds.), Tioga Press, Palo Alto, CA, 1983.

Duda, R. O. and Hart, P. E., Pattern Classification and Scene Analysis, Wiley, New York, 1973.

Feigenbaum, E. A., “The Simulation of Verbal Learning Behavior," Computers and Thought,
Feigenbaum, E. A. and Feldman, J.(Eds.), McGraw-Hill. New York, pp. 287-309, 1963,
{originally in Proceedings Western Joint Computer Conference, 1961),

Friedberg, R. M., “A Learning Machine: Part 1, I18M Journal, Vol. 2, pp. 2-13, 1958,




JO L DU S

16 References

Friedberg. R., Dunham. B. and North. T.. A Learning Machine: Part 2, /8.1 Journal of Research and
Development. Vol. 3. No. 3. pp. 282-287, 1959,

Fu. K. S.. Sequential Aethods in Pattern Recagnition and Machine Learning, Academic Press, New
York. 19€8.

Fu. K. 8., Pattern Recognition and Machine Learning, Plenum Press. New York, 1971,
Fu,K.S. and Tou, J. T., Learning Systems and Intelligent Robots, Plenum Press, 1974,
Fukanaga. K., Introduction to Statistical Pattern Recognition, Academic Press, 1972,

Haas. N.and Hendrix. G. G.. "Learning by Being Told: Acquiring Knowledge for information
Management,” Machine Learning, An Artilicial Intelligence Approacn. R.S. Michalski. J. G.
Carbonell and T. M. Mitchell (Eds.). Tioga Press. Palo Alto, CA, 1983,

Hayes-Roth. F.. “Schematic Classification Problems and their Solution,” Patrern Recognition. Vol. 8,
pp. 105-113, 1974,

Hayes-Roth. F.. “Using Proofs and Refutations to Learn from Experience.” Afachine Learning, An
Artiticial Intelligence Approach. R.S. Michalski. J. G. Carbonell and T.M. Mitchell (Eds.).
Tioga Press. Palo Altg, CA, 1983.

Hayes-Roth. F. and McDermott, J.. “An interference matching technique for inducing abstractions,”
Communications of the ACM, Vol. 21, No. 5, pp. 401-410, 1978.

Highleyman, W.H., "Linear Decision Functions, with Applications to Pattern Recognition."
Proceedings of IRE, No. S0, pp. 1501-1504, 1967.

Hilgard. E. R. and Bower, G. H., Theories of Learning - Third Cdition, Appleton-Century-Grofts, New
York, 1966.

Holland. J.H.. "Adaptive Algorithms for Discovering and Using General Patterns in Growing
Knowledge Bases,'" Policy Analysis and Information Systems, Vol. 4. No. 3, September 1980.

Hunt, E. B. and Hoviand, C. I., "Programming a Model of Human Concept Formation, Computers and
Thought. Feigenbaum. E. A. and Feldman. J. (Eds.). McGraw-Hiil. New York, pp. 310-325.
1963.

Hunt. E. B.. Marin. J. and Stone, P. T., Experiments in Induction. Academic Press. New York. 19€6.

Kanal. L., "Patterns in Pattern Recognition: 1968-1974." IEEF -Transactions on Information Theory,
Vol. iT-20. No. 6, pp. 637-722, 1974.

Karpinski. J. and Michalski. R. S.. ""A System that Learns to Recognize Hand-written Alphanumeric
Characters”. Technical Report 35. Proce Institute Automatyki, Polish Academy of Sciences.
19686.

Kazmierczak, H. and Steinbuch, K., "Adaptive Systems in Pattern Recognition,” IEEE Transactions of
Electronic Computers, Vol. EC-12, No. 5, pp. 822.835, 1963.

Koford. T.S. and Groner, G.F., “The Use of an Adaptive Threshold Element to Design a Linear
Optimal Pattern Classilier," IEEE Transactions-information Theory, Vol. 1T-12, pp. 42-50,
1966,

Langley, P.W.. Simon. H,A. and Bradshaw. G.L., “Rediscovering Chermistry with the BACON
System." Machine Learning, An Artlicial Intelligence Approacn. R.S. Michalski. J.G.




A Historical and Methodological Anaiysis 17

Carbonell and T. M. Mitchell (Eds.), Tioga Press. Palo Alto, CA, 1983.

Lenat, D. B.. AM: an artilicial inteilligence appreoach to discovery in mathematics as heuristic search,
Ph.D. dissertation, Stanford University, Stantord, California, 19786.

Lenat, D. B., “"The Role of Heuristics in Learning 5y Discovery: Three Case Studies,” Machine
Learning, An Artificial Intelligence Approach, R.S. Michalski, J. G. Carbonell and T.M.
Mitchell (Eds.), Tioga Press, Palo Alto, CA, 1883.

McCulloch, W. S. and Pitts. W., "A Logical Calculus of Ideas Imminent in Nervous Activity,” Bull.
Math. Biophysics, Vol. 5, pp. 115-133, 1943.

Mendel, T.and Fu, K.S.. Agaptive Learning and Pattern Recognition: Theory and Applications,
Spartan Books. New York, 1970.

Michalski, R.S., "A Variable-Valued Logic System as Applied to Picture Description and
Recognition,”” Graphic Languages, Nake, F. and Rosenfeid, A. (Ed.). North-Holland, 1972.

Michalski, R.S. and Larson, J.B., “Selection of Most Representative Training Examples and
Incremental Generation of VL1 Hypotheses: The Underlying Methodology and Description of
Programs ESEL and AQ11", Report 867, University of lllinois, 1978.

Michalski, R. S., "A Theory and Methodology of Learning from Examples,” Machine Learning, An
Artificial Intelligence Approach, R.S. Michalski, J. G. Carbonell and T.M. Mitchel! (Eds.),
Tioga Press, Palo Alto, CA, 1983.

Michaiski, R. S.. "AQVAL/1 - Computer implementation of a variable valued logic system VL1 and
examples of its application to pattern recognition,” Proceedings of the First International Joint
Conlference on Pattern Recognition, Washington, D. C., pp. 3-17, 1973b.

Michalski, R.S., and Stepp, R. E., “Learning from Observation: Conceptual Clustering,” Machine
Learning, An Artiticial Intelligence Approach, R.S. Michaliski, J. G. Carboneil and T.M.
Mitchell (Eds.), Tioga Press, Palo Alto, CA, 1983.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (Eds), Machine Learning. An Artiticial intelligence
Approach, Tioga Press, Palo Alta, CA, 1983.

Michie, "The State of the Art in Machine Learning,” Introductory Readings in Expert Systems,
D. Michie (Ed.), Gordon and Breach, UK, 1982,

Minsky, M. and Papert, S., Perceptrons, MIT Press, Cambridge, Mass., 1969.

Mitchell, T. M., Version Spaces: An approach o concept learning, Ph.D. dissertation. Stanford
University, December 1978, (also Stanford CS report STAN-CS-78-711. HPP.79-2).

Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., "Learning by Experimentation: Acquiring and Refining
Problem-Solving Heuristics,”” Machine Learning, An Artificial Intelligence Approach, R.S.
Michaiski, J. G. Carbonell and T. M. Mitcheli (Eds.), Tioga Press, Palo Alto, CA, 1983.

Mostow, D.J., “Transforming Declarative Advice into Effective Procedures: A Meuristic Search
Example,” Machine Learning, An Artificial intelligence Approach, R.S. Michaiski, J.G.
Carbonell and T. M. Mitchell (Eds.), Tioga Press, Palo Alto, CA, 1983.

Newell, A. and Rosenbloom. P., “Mechanisms of Skill Acquisition and the Law of Practice,” Cognitive
Skills and Their Acquisition, Anderson, J. R. (Ed.), Erlbaum Associates. Hillscale, New Jersey,
1981.




18 ] References

Nilsson. N. J.. Learning Macmnes. McGraw-Hill, Mew York, 1965.
Popper. K., The Logic of Scienufic Discovery. Harper and Row. Mew York, 1988. (2nd edition).

Quinlan, J.R., "Learning Efficient Classification Procedures and their Application to Chess End
Games.” HKlacrune Learning, An Artificial Imtefligence Approach. R.S. Michalski, J.G.
Carbonell and 7. M. Mitchell (Eds.). Tioga Press, Palo Alto, CA, 1983,

Rashevsky. N., Mathematical Biophysics, University of Chicago Press, Chicago, IL, 1948.

Rosenblatt. F., “"The Perceptron: A Probabilistic Model for Information Storage and Organization in
the Brain.” Psycnhological Review, Vol. 65, pp. 2386-407, 19£8.

Rosenblatt. F.. Principies of Neurodynamics ang the Thecry of Brain Llechamsms, Spartan Books.
Washington, D. C., 1982,

Rychener, M. D.. "The Instructible Production System: A Retrospective Analysis.” Zlachine Learning,
An Artiticial Intelligence Approach. R. 8. Michalski, J. G. Carbonell and T. M. Mitchell (Eds.).
Tioga Press, Palo Aito, CA, 1983.

Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers," I18M Journal of
Research and Development, No. 3, pp. 211-229, 1859.

Samuel. A. L., “Some Stucies in Machine Learning using the Game of Checkers.” Comouters and
Thought, Feigenbaum, E. A. and Feldman, J. (Eds.). McGraw-Hill, New York, pp. 71-105, 1963,

Sebestyen. G. S., Decision-Making Processes in Pattern Recognition, Macmillan, New York, 1962,

Selfridge, O. G., "Pandemonium: A Paradigm for Learning," Proceedings of the Symposium ¢
Mechanization ol Thought Processes, Blake, D.and Uttley, A. (Eds.). HMSO, Loncon. pp.
511.529, 1959,

Simon. H. A. and Lea. G., "Problem Solving and Rule Induction: A Unified View." Knowledge and
Cognition, Gregg, L. W. (Ed.), Lawrence Eribaum Associates. Potomac, Maryland, pp.
105-127, 1974,

Sleeman. 0. H., "Inferring Student Models for Intelligent Computer-Aided Instruction.” Alachine
Learning. An Artiticial Intelligence Aporoach. R.S. Michalski, J. G. Carbonell and T.M.
Mitchell (Eds.), Tioga Press, Palo Alto. CA, 1983,

Sloman. A.. The Computer Revolution in Philosophy: Philosophy, Science Ang Mogels of ite Mind,
Harvester Press, 1978.

Truxal. T. G.. Automatic Feeaback Control System Synthesis. McGraw-Hill. New York, 1953, (New
York).

Tsypkin. Y. Z., "Selt Learning - What is it?,"" /EEE Transactions on Automatic Control. Vol. AC-18, No.
2, pp. 109:117, 1968.

Tsypkin, Ya Z., Adaptation and Learning in Automatic Systems. Academic Press. New York, 1971,

Tsypkin, Y. Z., Foundations of the Theory of Learning Sysitems, Academic Press, New York, 1973,
(Translated by Z. L. Nikolic).

Uhr. L.. Pattern Recognition, John Wiley and Sons. New York, 1966.

Vere. S. A., "Induction of concepts in the predicate calculus, Proceedings of the Fourth international




A Historical and Methodological Analysis 19

Joint Conference on Artificial intetligence. IJCAL, Tbilisi, USSR, pp. 281-287, 1975,

Watanabe. S.. “information- Theoretic Aspects of inductive and Deductive Inference,” /18M Journal of
Research and Development, Vol. 4, No. 2. pp. 208-231, 1960.

Widrow, B.. Generalization and Information Storage in Networks of Adefaine 'Neurons,’, Spartan
Books, Washington. D.C., pp. 435.461, 1962, (Yovitz, M. C.; Jacobi, G. T.,; Goldstein, G. D.,
editors).

Winston. P. H.. “Learning structural descriptions from examples,” The Psychology of Computer
vision. Winston. P. H. (Ed.}, McGraw Hill, New York. ch. 5. 1978, (Original version published as
a Ph.D. dissertaition, at MIT Al Lab, September, 1970).

Winston. P. H.. "Learning and Reasoning by Analogy.” CACA!. Vol. 23. No. 12, pp. 689-703, 1979,

Yowvits. M.C.. Jacobi, G.T. and Goldstein, G.D., Seif-Organizing Systems. Spartan Books.
Washington. D. C., 1962.




A - - <
s A . Vg -
S~ g-03-11% /\\LL '/“») I~ C>~)J ;
& T Tl cenz Sobuiier S. TYPE CF REPCRY 8 FLR:CZ COVERED
HACHINE LIARNING PART 1: A HISTORIZAYL .
Interi~
LT LI AT ~ ATV ad
AND METHEODOLOGICAL ANALYSIS €. PERFORMING ORG., RESCORT NUMBER
7. ALUTHOR(s) . &. CONTRACT OR GRAKT NUWSER(S)
Jaime G. Carbtonell .
: 11 A ~_ma_ Fr
5 et Ve . . e - ot -O .
R.S, Michalsxi, Univ. of Ill., at Urbana "rsggLo’{”C °
es . . Jic 2-051%2
T. M. Mitchel]l Rutgers University. :

9. PERFORMING ORGANIZATION NAME AND ADORESS [CH PREGR‘AV ERLENENT'T. PRZUECT, TASK
Carnegie-Mellon University AREA & mORK UNIT hUMBERS
Computer Science Department
Pittsburch, PA 15213

11, CONTROULLING OFFICE NAME AND ADDRESS 12. REPODRT DATE

{ > Mawr 3 TAa3

Office of Naval Research Hay 31, 1933

Arlington, VA 22217 '3 NUMBER OF P‘Gas,j,)
14. MONITORING AGENCY NAME & ADDRESS(( ctlteront troz: Controlling Ollice, 15, SEQURITY CLASS, (of thie report)

UNCLASSIFIZED
15a. DECLASSIFICATION. COWNGRADING
SCHEDULE
\6. DISTRIBUTION STATEMENT (of this Repory)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the adstract entered In Block 20, If dilterent {roe Keport)

1E. SUPPLEMENTARY NOTES

19. KEY WORDS (Ccatinue on raverse siae 1l necessary and identlly by bloca nuzber)

2¢. AESTRACT (Confinue on reverse side {{ necessary ané loentily by bicy ra—ler,

S hin, V4T3 emitewer twsvttis ceLnate P et TITY

C/N CI02-Caae el

BLCLRTY Cosotitils s tnCr imoa

—— e ——
SALL ‘¥ e a0 Priereg







